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Bridge Centrality: A Network Approach to Understanding Comorbidity

Payton J. Jonesa , Ruofan Mab, and Richard J. McNallya

aDepartment of Psychology, Harvard University; bDepartment of Psychology, University of Waterloo

ABSTRACT
Recently, researchers in clinical psychology have endeavored to create network models of
the relationships between symptoms, both within and across mental disorders. Symptoms
that connect two mental disorders are called "bridge symptoms." Unfortunately, no formal
quantitative methods for identifying these bridge symptoms exist. Accordingly, we devel-
oped four network statistics to identify bridge symptoms: bridge strength, bridge between-
ness, bridge closeness, and bridge expected influence. These statistics are nonspecific to the
type of network estimated, making them potentially useful in individual-level psychometric
networks, group-level psychometric networks, and networks outside the field of psychopath-
ology such as social networks. We first tested the fidelity of our statistics in predicting
bridge nodes in a series of simulations. Averaged across all conditions, the statistics
achieved a sensitivity of 92.7% and a specificity of 84.9%. By simulating datasets of varying
sample sizes, we tested the robustness of our statistics, confirming their suitability for net-
work psychometrics. Furthermore, we simulated the contagion of one mental disorder to
another, showing that deactivating bridge nodes prevents the spread of comorbidity (i.e.,
one disorder activating another). Eliminating nodes based on bridge statistics was more
effective than eliminating nodes high on traditional centrality statistics in preventing comor-
bidity. Finally, we applied our algorithms to 18 group-level empirical comorbidity networks
from published studies and discussed the implications of this analysis.
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Mental disorders are common and co-occur at high
rates. American adults have a 17% chance of qualifying
for at least one mental disorder (Park-Lee, Lipari,
Hedden, Copello, & Kroutil, 2016), and if an individual
qualifies for one disorder, there is a 45% chance that he
or she qualifies for at least one more (Kessler, Chiu,
Demler, & Walters, 2005). Having multiple mental dis-
orders predicts poorer prognosis, greater demand for
professional help, greater trouble dealing with everyday
life, and higher suicide rates (Albert, Rosso, Maina, &
Bogetto, 2008; Brown, Antony, & Barlow, 1995;
Schoevers, Deeg, Van Tilburg, & Beekman, 2005).

An emerging approach to psychopathology and
comorbidity is the network model (Borsboom, 2017;
Borsboom & Cramer, 2013; Cramer, Waldorp, van
der Maas, & Borsboom, 2010; McNally, 2016).
Network models are used within a wide variety of sci-
entific fields (Barab�asi, 2012). Networks consist of
nodes (components of a system) and edges (relation-
ships between these components). The edges in a net-
work may or may not be directed (having a specific

direction from one node to another) and may or may
not be weighted (edges are assigned a value to repre-
sent the strength of relationships).

Network models of psychopathology describe men-
tal disorders as an interacting web of symptoms.
Mental disorder networks may also include other
important nodes, such as cognitive and biological var-
iables (Jones, Heeren, & McNally, 2017). Network the-
orists hold that mental disorders are emergent
phenomena arising from direct causal interactions
among their constituent symptoms; they are not
underlying entities that cause the emergence of symp-
toms. The accurate characterization of these interac-
tions is an essential key to elucidating the
mechanisms of psychopathology and developing
focused intervention strategies. Many researchers have
recently endeavored to use empirical data to model
networks of mental disorders (for reviews, see Fried
et al., 2017; McNally, 2016). More recently, an
emphasis has been placed on estimating networks at
the level of the individual (Epskamp, Borsboom, &
Fried, 2018; Fried & Cramer, 2017).
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Network models provide a new understanding of
comorbidity (Cramer et al., 2010). Symptoms are
often shared among mental disorders; sleep disturb-
ance and difficulty concentrating appear as symptoms
in many psychiatric syndromes, for example, and fea-
tures of certain disorders figure as risk factors for
other disorders. Social isolation, common in social
anxiety disorder, is a risk factor for other mental and
physical health problems (Cornwell & Waite, 2009;
Lim, Rodebaugh, Zyphur, & Gleeson, 2016).
Symptoms of obsessive-compulsive disorder (OCD)
are linked to guilt, which is a risk factor for depres-
sion (Kim, Thibodeau, & Jorgensen, 2011). In other
words, the symptoms of mental disorders spread: hav-
ing certain symptoms of one disorder can put one at
risk for other disorders, thereby producing diagnostic
comorbidity. Those symptoms that increase risk of
contagion to other disorders are "bridge symptoms"
(Cramer et al., 2010). To treat or to prevent comor-
bidity, clinicians may wish to therapeutically target
these bridge symptoms.

Psychometric network terminology

Network methods are used in a variety of fields, and
the terminology and application of these methods dif-
fer somewhat by discipline. In this article, we use psy-
chometric network terminology, especially as it
pertains to clinical psychology (e.g., Borsboom, 2017).
We cover basic terminology of network psychometrics
here; for extensive discussions see McNally (2016) and
Epskamp et al. (2018).

Networks in clinical psychology are typically esti-
mated from datasets containing information about
mental disorder symptoms. Datasets may be binary
indicators of symptom presence or absence, but more
frequently consist of Likert-style ratings of symptom
severity. These datasets can be conceptualized as
forming a two-mode affiliation network—in this case,
a network where one mode is the respondents and the
other mode is the symptoms, with edges drawn
between respondents and symptoms when a respond-
ent endorses that symptom (Wasserman & Faust,
1994). Psychometric network analysis (Epskamp et al.,
2018) involves collapsing this two-mode structure into
a one-mode structure of symptoms only. Edges are
drawn between symptoms based on psychometric
properties calculated from the two-mode information
(e.g., correlation)1. Because this type of collapse
involves calculating psychometric information such as

correlations or linear regressions, it makes the
assumption that responses arise from a meaningful
underlying population.

In the simplest of cases, the estimated networks
consist of association networks based on cross-sec-
tional datasets, where the nodes represent symptoms
and the edges correspond to zero-order correlations
between the symptoms. Researchers also estimate con-
centration networks, where the edges correspond to
partial correlations. Because such estimation methods
often generate many small, potentially spurious edges,
researchers frequently use regularization methods such
as a graphical least absolute shrinkage and selection
operator (graphical LASSO or GLASSO; Friedman,
Hastie, & Tibshirani, 2014) to shrink small edges in
concentration networks to zero, resulting in a sparse
network. Some researchers have used thresholding of
edges to achieve a similar purpose. Edge weights in
psychometric networks typically have a sign (negative
or positive). A positive sign indicates that the con-
nected nodes covary in the same direction, and a
negative sign indicates that they covary inversely (e.g.,
as node A increases, node B decreases).

There are other techniques for estimating edges
based on cross-sectional data, such as relative import-
ance networks and directed acyclic graphs (DAGs). A
relative importance network is a directed network
relying on multiple regression where edges estimate
the contribution of a given node in the prediction of
another node (e.g., Gr€omping, 2006). DAGs are
directed graphs that disallow feedback loops among
nodes. DAGs can be estimated via several techniques
(e.g., Kalisch, M€achler, Colombo, Maathuis, &
B€uhlmann, 2012; Scutari, 2010). When intensive lon-
gitudinal data are available, researchers may estimate
temporally directed networks, including vector autore-
gressive models (VARs) and multilevel vector autore-
gressive models (mlVARs). In VAR models a network
is constructed for a single individual over time where
each variable is modeled as a linear function of all
variables at previous time points, with edges repre-
senting regression coefficients (Chatfield, 2003).
Multilevel VARs (mlVARs) expand upon the VAR
approach by using data across multiple individuals
measured longitudinally to simultaneously estimate
temporal, contemporaneous, and between-subjects
networks (Epskamp, Deserno, & Bringmann, 2017).

Psychometric networks are often analyzed by calcu-
lating node centrality statistics, such as strength cen-
trality, betweenness centrality, closeness centrality, and
expected influence, computed via the R packages
qgraph (Epskamp, Cramer, Waldorp, Schmittmann, &

1The resultant one-mode structures are typically termed "dependence
graphs" in the statistical literature, rather than "psychometric networks."
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Borsboom, 2012) or bootnet (Epskamp et al., 2018).
For weighted graphs, these packages rely on the node
centrality formulas outlined by Opsahl, Agneessens,
and Skvoretz (2010). Strength centrality sums the
absolute values of the weights on the edges connected
to a node and is a measure of overall connectedness.
Betweenness centrality counts the number of times a
node lies on the shortest path between any other two
nodes and is used to infer which nodes might fre-
quently act as “middlemen” in network transactions.
Closeness centrality measures how close, in terms of
edge distance, a node is on average to all other nodes.
Expected influence centrality is similar to strength cen-
trality but does not take the absolute value of edges
before summing, therefore providing a measure of
overall positive connectivity in networks with both
positive and negative edges (Robinaugh, Millner, &
McNally, 2016). Strength and expected influence have
been most emphasized within the context of psycho-
pathology networks, whereas betweenness centrality
and closeness centrality are less applicable (Epskamp
et al., 2018; Forbes, Wright, Markon, & Krueger,
2017). Although betweenness and closeness are some-
what less emphasized within psychometric networks,
they remain useful in other types of networks.

In this article, we use the term community to indi-
cate a theoretically based group of nodes which cor-
respond to a psychiatric disorder based on clinical
criteria, not based on any network analytic procedure
(e.g., community detection analyses; see Blanken et al.,
2018; Hoffman, Steinley, Gates, Prinstein, & Brusco,
2018). In other words, communities are based on
information independent of the network structure
itself. A useful parallel in social network analysis
would be examining individuals in communities of
various ethnicities. Although the actual network struc-
ture of friendships among individuals may not be split
along ethnic lines, ethnic communities are still mean-
ingful groups in which individuals may be
categorized.

Bridge centrality

Psychometric researchers in psychopathology have
relied on visual inspection of networks to identify
bridge symptoms (Beard et al., 2016; Jones et al.,
2017; Levinson et al., 2017; McNally, Mair, Mugno, &
Riemann, 2017). Unfortunately, this informal
approach is untenable for large, complex networks,
and may be misleading even in small networks (Jones,
Mair, & McNally, 2018). Accordingly, one of us
devised four statistics that formally identify nodes

high on bridge centrality, implementing them in the R
package networktools (Jones et al., 2017; R Core
Team, 2017). As extensions of extant centrality meas-
ures, we call them bridge strength, bridge betweenness,
bridge closeness, and bridge expected influence.

For each statistic, we consider a network consisting
of multiple predefined disorders, deemed communities.
To illustrate each statistic, we consider a highly sim-
plified toy network consisting of three communities:
depression, generalized anxiety disorder (GAD), and
OCD (see Figure 1).

We introduce the following notations that apply to
all of the statistics found below.

Let a network consisting of a set of V nodes and E
edges be noted as G(V, E). Let C be a set of nodes in
a community in this network, C � V . We will define
each of the bridge centrality statistics with respect to a
node a, where a 2 C: We use N(a) to denote the set
of nodes adjacent to a. Let wab denote the weight on
each edge ab 2 E:

Bridge strength indicates a node’s total connectivity
with other disorders. Consider the node sadness in the
depression community. We can find its bridge
strength by summing the absolute value of every edge
which connects sadness to symptoms of GAD or to
symptoms of OCD. In a directed network, bridge
strength can be separated into bridge in-strength (the
sum of absolute inter-community edges directed
toward the node) and bridge out-strength (the sum of
absolute inter-community edges issuing from a node).

bridge strength ¼
X

b2 N að Þ�Cð Þ
jwabj

Bridge betweenness assesses the number of times a
node lies on the shortest path between any two nodes

compulsions

anxiety worry

obsessions anhedonia

sadness

OCD Depression

GAD

Figure 1. An example figure to illustrate bridge centrality cal-
culations. If all edge weights are equal to 1, the bridge
strength of the sadness node is 2, the bridge betweenness is 4
(all ties counting), and the bridge closeness is 0.75.
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from two distinct disorders. For example, we would
count the number of times in which the node sadness
lies on the shortest path between other depression
nodes and GAD nodes, depression nodes and OCD
nodes, and GAD nodes and OCD nodes.

Let Pij be a shortest path between i 2 V and j 2 V;

where node i and node j are in different communities.
Define x such that

x ¼ 0:5; if a 2 Pij
0; otherwise

�

Then the bridge betweenness of a 2 A is

bridge betweenness ¼
X
i2V

xi

Bridge closeness reflects the average distance from a
node to all nodes outside of its own disorder. In an
unweighted network, distance is simply the shortest
possible number of edges that separate one node from
another (e.g., the distance between worry and compul-
sions is 2). In a weighted network, distance is based
upon the inverse of the edge weights (edges with
higher weights indicate nodes that are "closer"
together). For the sadness node, we would first find
the distance between sadness and each node of OCD
and GAD. Then, we would determine the average of
these distances. Finally, to convert the statistic into a
measure of closeness, where higher values represent
closer nodes, we take the inverse of the aver-
age distance.

Let a 2 C and b 62 C: Let Pab be a shortest path
between a and b, consisting edges EðPabÞ ¼ fe1; :::; ek;
:::; eng where each edge has weight wk for 1 � k � n:

The bridge closeness of a is

bridge closeness ¼ jV�CjP
b2 V�Cð Þ

P
ek2E Pabð Þ

1
wk

:

Bridge expected influence, much like bridge
strength, indicates a node’s sum connectivity with
other disorders. However, in the case of bridge
expected influence, we do not take the absolute value
of edges before summing them. Accordingly, this stat-
istic is useful for networks that have negative as well
as positive edges (Robinaugh et al., 2016). In correl-
ation-based networks, an edge with a positive value
indicates that an increase in activation of one node is
associated with an increase in activation of the node
connected to it. In contrast, a negative edge indicates
that an increase in the first node is associated with a
decrease in the second node. Therefore, attention to
the signs of edge weights is essential if one wishes to
calculate a centrality statistic signifying an overall
increase in node activation (expected influence) rather

than a statistic signifying the absolute value of the
summed connection weights. This is especially
important when clinical researchers aim to target cer-
tain symptoms for therapeutic deactivation
(Robinaugh et al., 2016). In a directed network, bridge
expected influence sums only those edges issuing from
a node.

bridge expected influence ¼
X

b2 N að Þ�Cð Þ
wab

Extant statistics related to bridge centrality

The idea that certain nodes play a key role in con-
necting groups of nodes to one another has been
explored by researchers in the past. As mentioned
above, betweenness is commonly regarded as a statistic
that signifies the extent to which a node might play a
key role in serving as a connection point between
other nodes. Another example is Hwang, Kim,
Ramanathan, and Zhang’s (2008) bridging centrality
statistic that combines betweenness with a bridging
coefficient that determines the extent to which the
node is located between high-degree nodes. The
names are similar, but the concepts are not. Bridging
centrality is an extension of betweenness centrality
and is based solely on network structure whereas
bridge centrality denotes a set of novel network statis-
tics based on theoretically defined commu-
nity structures.

Identifying bridges across theoretically important
communities

The main difference between extant centrality statis-
tics and bridge centrality is the specification of com-
munities via a guiding theory, rather than by network
structures. In other words, bridge centrality depends
on how the researcher defines communities. All the
aforementioned statistics, on the other hand, do not
take into account any theoretically determined com-
munity structure

Consider the toy example in Figure 2. Suppose that
a researcher is interested in the comorbidity of social
anxiety and depression. Because node SA1 highly con-
nects many nodes to each other, it would score high
on betweenness centrality or on Hwang et al.’s bridg-
ing centrality. However, such measures would not
address the question of bridge symptoms driving
comorbidity between the social anxiety community
and the depression community.

4 P. JONES ET AL.



Theoretically defined communities figure in fields
other than clinical psychology. For example, social sci-
entists examining bridge nodes (individual persons)
connecting groups distinguished by race or ethnicity,
or a personality psychologist examining characteristics
of extroversion and agreeableness traits may usefully
compute bridge centrality statistics. Such communities
are defined by features external to network structure
per se.

Study 1: Sensitivity and specificity of bridge
centrality in detecting known bridges

First, we tested whether the statistics accurately identi-
fied bridge symptoms. To accomplish this aim, we
created artificial networks consisting of communities
connected by bridge symptoms. We then applied our
statistics across diverse networks under various condi-
tions to test their accuracy in identifying the "true"
bridge nodes.

Using the igraph R package (Csardi & Nepusz,
2006; R Core Team, 2017), we simulated networks
and applied the bridge function in the networktools R
package (Jones et al., 2017) to calculate bridge central-
ity statistics. The structure of the networks was
designed to reflect empirical network studies on diag-
nostic comorbidity using network psychometrics; a
representative simulated network appears in Figure 3a.
In each network, we randomized the number of net-
work communities between 2 and 5 inclusive, repre-
senting the number of comorbid disorders. In each
community, we generated a random number of nodes
between 6 and 21 inclusive, representing the number
of symptoms in each disorder. Furthermore, we gener-
ated a random number, between 1 and 5 inclusive, of
bridge nodes and assigned them to random commun-
ities. Edges were added such that each node was con-
nected to 75–100% of nodes in its own community,
with weights randomly assigned to each edge from a
uniform distribution between 0 and 1. Bridge nodes
were connected to 75–100% of nodes in their own
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Figure 3. (Left) a simulated comorbidity network with no noise, (right) a simulated comorbidity network with noise added.

SA1
SA2SA3

SA4
SA5

SA6

SA7
SA8

D1

D2 D3

D4

●

●

Social Anxiety
Depression

●

●

Social Anxiety
Depression

Figure 2. A toy example for differentiating general bridgeness
from bridge centrality with specified communities.
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communities, and connected to 0–25% of random
nodes in other communities, with weights randomly
assigned from uniform distributions between 0.5–1
and 0–0.5, respectively. Networks were simulated as
either directed or undirected. In the case of directed
networks, edge direction was determined randomly.
For each network, we recorded which node belonged
to which community. To render the simulation espe-
cially challenging for the algorithm, we added random
noise to some of the simulated networks, creating
another condition: noiseless vs. noisy. To generate
noise, we combined each edge with a noise parameter
generated from a normal distribution with mean 0
and standard deviation 0.05 to simulate random errors
that may occur in real measurements. A network with
noise added appears in Figure 3b.

Because there are many types of psychometric net-
works, it is impossible to design a simulation para-
digm representative of all of them. For example,
association networks depict undirected zero-order cor-
relation matrices, whereas this simulation paradigm
does not produce networks which approximate the
structure of correlations, and some of its networks are
directed. Graphical LASSO networks are typically
sparse, and this simulation paradigm will produce
dense networks in conditions where noise is added.
However, the conditions generated by this paradigm
are broad and represent a wide variety of network
structures and number of communities, increasing
confidence that bridge centrality statistics function
well in a wide variety of situations.

Finally, we used bridge strength, bridge between-
ness, and bridge closeness to detect bridge nodes.
After calculating the bridge centrality values for each
network, we selected the top 20% scoring nodes on a
given statistic and selected these as predicted bridge
nodes. We do not recommend using a specific cutoff
for empirical analyses: instead, one should carefully
analyze distributions and select bridge nodes based on
distributional tendencies in combination with one’s
own disciplinary expertise. In the case of our simu-
lated networks, 20% produced an acceptable balance
between sensitivity and specificity.

In summary, our simulation involved a 2� 2 � 3
approach for a total of 12 simulation conditions on
500 networks each (directed vs. undirected; noiseless
vs. noisy; strength vs. betweenness vs. closeness). After
using our algorithms to predict bridge nodes, we com-
pared these predictions to the true patterns of bridge
nodes, thereby assessing their sensitivity and specifi-
city. Sensitivity (true positive rate) indicates the per-
centage of bridge nodes correctly detected by the

algorithm. Specificity (true negative rate) indicates the
percentage of non-bridge nodes correctly excluded by
the algorithm. Code in the supplementary materials
includes additional simulations on networks that
include negative edges, motivating the use of the
bridge expected influence statistic.

Study 1: Results

The results for averages of sensitivity and specificity
across various conditions are presented in Table 1. An
expanded table with results for all simulation condi-
tions is available in the supplementary materials (sup-
plementary materials can be accessed at http://osf.io/
c5dkj/). The grand mean across all conditions yielded
a sensitivity of 92.7% and a specificity of 84.9%. In
other words, across all conditions, the algorithms
detected 92.7% of true bridges in the networks and
misidentified 15.1% of ordinary nodes as bridge
nodes. Our relatively low threshold for bridge node
selection erred on the side of sensitivity across condi-
tions; a slightly higher cutoff would have yielded a
higher specificity at the expense of sensitivity.

Sensitivity and specificity were extremely stable
across all conditions (total range of sensitivity
89.5–96.9%, specificity 84.1–86.5%). Undirected vs.
directed networks showed very minimal differences in
both sensitivity and specificity (<1%) across condi-
tions. Unsurprisingly, networks without noise had
greater sensitivity than did those with noise added
(difference of �2% sensitivity). We were surprised
that added noise had only a minor effect on sensitivity
and specificity. Notably, adding noise also altered the

Table 1. Sensitivity and specificity of bridge detec-
tion algorithms.
Directedness Noise Criterion Sensitivity Specificity

–� – – 0.927 0.849
Undirected – – 0.928 0.849
Directed – – 0.927 0.849

– Yes – 0.917 0.845
– No – 0.938 0.853
– – Strength 0.946 0.854
– – Betweenness 0.937 0.851
– – Closeness 0.899 0.842

Undirected No Strength 0.969 0.863
Undirected No Betweenness 0.943 0.852
Undirected No Closeness 0.902 0.842
Undirected Yes Strength 0.927 0.845
Undirected Yes Betweenness 0.932 0.850
Undirected Yes Closeness 0.895 0.841
Directed No Strength 0.969 0.865
Directed No Betweenness 0.942 0.852
Directed No Closeness 0.903 0.842
Directed Yes Strength 0.919 0.844
Directed Yes Betweenness 0.932 0.850
Directed Yes Closeness 0.895 0.841
�The symbol “–” indicates a mean score across conditions.
Grand means are in bold typeface.
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density of the networks, such that networks with
added noise had a density of 100%. This density
change seemingly had little effect on the sensitivity
and specificity of the statistics. Of the three algorith-
mic criteria, bridge strength, and bridge betweenness
were the most accurate in terms of sensitivity, with
bridge closeness lagging slightly behind. This is some-
what unsurprising, given that our simulation approach
focused on direct connections between bridge nodes
and other nodes, a situation most closely aligned to
bridge strength.

Study 2: Robustness of bridge centrality
statistics in estimated networks

In practice, psychometric networks are estimated from
datasets of varying sample sizes. Estimated networks
may or may not approximate the true network struc-
ture underlying the data. To determine the robustness
of our bridge centrality statistics in estimated net-
works, we simulated datasets of varying sample size
and estimated psychometric networks based on the
simulated data. For the "true networks" used to gener-
ate the data structures, we used 12 empirical psycho-
metric networks from published studies. This allows
us to test whether our simulation paradigm works
well in applied settings. More information on the
identification and collection of these empirical psycho-
metric networks is reported in Study 4.

We simulated datasets consisting of 50, 100, 300,
500, 1000, or 10,000 observations. For each possible
sample size in each of the 12 viable empirical correl-
ational network structures, we estimated 100 datasets
(i.e., a 6� 12 simulation with 100 datasets in each

cell). For each dataset, we generated a psychometric
network consisting of partial correlation values, and
subsequently calculated each of the four bridge cen-
trality statistics (bridge strength, bridge betweenness,
bridge closeness, and bridge expected influence). We
then correlated those recovered bridge centrality sta-
tistics with the bridge centrality statistics as calculated
in the underlying true network structures. We define
adequate robustness as a large correlation (r> 0.5)
between the true bridge statistics and the estimated
bridge statistics.

Study 2: Results

The results of Study 2 are visualized as box plots in
Figure 4. As expected, bridge centrality statistics were
substantially more accurate in recovering the true net-
work structure when the sample size was large.
Notably, the median correlation of the recovered
bridge centrality statistics consistently remained below
0.5 when the sample size was 100 or below. With a
sample of 10,000, bridge centrality statistics were con-
sistently recovered with a large correlation, whereas
sample sizes between 100 and 1000 had a broad range
of recovery. Median correlations above 0.5 were typic-
ally observed when the sample size was equal to or
greater than 300. We were surprised that robustness
seemed relatively consistent across the different statis-
tics, although bridge expected influence and bridge
strength showed a modest advantage over bridge
betweenness and bridge closeness, with bridge
expected influence showing the greatest robustness at
high sample sizes.
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Figure 4. Accuracy in retrieving each type of bridge centrality in simulations.
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Study 3: Efficacy in prevention of contagion

We also tested whether deactivating (successfully
“treating”) a node high on bridge centrality would be
an especially potent means of thwarting the spread of
activation, thereby preventing the emergence of
comorbid psychopathology, as Cramer et al. (2010)
hypothesized. Indeed, clinical interest in bridge symp-
toms arises from their promise as targets of thera-
peutic intervention.

It should be noted that empirical cross-sectional
and even individual psychometric networks in the lit-
erature do not represent validated causal models of
how activation might spread from node to node. This
simulation therefore rests on assumptions made in
network theory (Borsboom, 2017) that nodes do
indeed spread activation through causal patterns and
represents a simulation of important bridges being
detected given a causal network structure. Thus, any
results of this simulation will not demonstrate that
psychometric networks are causal in any way but will
rather show that if a causal network were known,
bridge centrality statistics would accurately capture
nodes that are important in bridging communities
within this causal network.

To investigate this issue, we followed Robinaugh
et al. (2016) method of simulating network activity in
each of 1000 simulated networks by allowing activa-
tion to "spread" across symptoms over a process of 10
iterations (Robinaugh et al., 2016). We first assigned a
value of 0.5 to each node in a single community,
thereby activating all its symptoms. For the subse-
quent iterations, the activated symptoms increased the
value of their neighbors by a rate proportional to their
current value multiplied by the edge weight between
them. For example, if node A had an initial value of
0.5, and had an edge of weight 0.8 with its neighbor
node B, then after the first step, node B would
increase by a value proportional to 0.4 (0.5� 0.8).
Because the networks primarily consisted of positive
edges, consecutive steps lead to higher total net-
work activation.

We simulated this network activity in two control
conditions and one experimental condition. In the
first control condition, the five nodes in the network

with the highest strength centrality were permanently
set to 0 before running the simulation. In the
second control condition, the five nodes with the
highest betweenness centrality were fixed at 0. In the
experimental condition, the five nodes with the high-
est bridge strength centrality were fixed at 0.
Simulations were run across 500 undirected networks
and 500 directed networks generated via the process
described in Study 1. Because this simulation was
designed to assess contagion in true mental disorder
networks, we did not include the generation of ran-
dom noise.

We measured the network activation of all com-
munities excepting community A at each step in the
process. We hereafter refer to this network activation
as the contagion, as it represents the total amount of
activation spread from the first disorder to all
other disorders.

Study 3: Results

Results for the Study 3 simulation are presented in
Table 2. As expected, the experimental condition of
turning off bridge nodes as detected by the bridge
strength algorithm was the most successful method
for preventing contagion across all conditions, with
bridge strength performing more than three times as
well than either control condition in preventing conta-
gion by the last iteration. Results were consistent
across both directed and undirected networks. Figure
5 presents a visualization of contagion over time in
the undirected condition.

These results were unsurprising, given the strong
conceptual foundation for bridge nodes and the evi-
dence from Study 1 that bridge nodes could be accur-
ately predicted. However, it should be noted that the
findings were based upon representative networks that
consisted of semi-connected communities, and may
not apply to all networks (e.g., when communities are
very closely intertwined). In contrast, eliminating
bridges may sometimes be more effective than shown
in this simulation if communities are only connected
by a few edges (e.g., DAG in McNally et al., 2017).

Table 2. Simulation of mental disorder symptom contagion over time.
Removed nodes Noise Direction Contagion (Iteration 3) Contagion (Iteration 5) Contagion (Iteration 10)

Bridge strength Noiseless Undirected 0.001� 0.002 0.007
Strength Noiseless Undirected 0.012 0.028 0.086
Betweenness Noiseless Undirected 0.003 0.007 0.021
Bridge strength Noiseless Directed 0.001 0.002 0.007
Strength Noiseless Directed 0.013 0.030 0.093
Betweenness Noiseless Directed 0.003 0.008 0.024
�Contagion represent the total activation of symptoms in all disorders other than the original activated disorder.
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Study 4: Application to clinical datasets

Our final aim was to evaluate the bridge centrality
indices in networks based on empirical data. Through
a literature search, we were able to identify nine pub-
lications examining the comorbidity between multiple
mental disorders (Beard et al., 2016; Borsboom &
Cramer, 2013; Boschloo, Schoevers, van Borkulo,
Borsboom, & Oldehinkel, 2016; Boschloo, van
Borkulo, Rhemtulla, Keyes, Borsboom, & Schoevers,
2015; Jones, Mair, Riemann, Mugno, & McNally,
2018; Levinson et al., 2017; McNally et al., 2017;
Robinaugh et al., 2016; Ruzzano, Borsboom, & Geurts,
2015). These articles contained a total of 18 unique
psychometric networks. After using supplementary
materials and contacting authors for additional data,
we were able to completely reproduce 17 of the net-
works, and partially reproduce 1 network (due to
small instabilities in Bayesian estimation techniques).

After reproducing these 18 networks, we used the
bridge function in the networktools packaged to ana-
lyze bridge centralities. Bridge centralities were visual-
ized in each case, and likely bridges were colored and
presented in a network graph. A representative ana-
lysis is presented in Figure 6 (completed analyses for
each of the 18 networks can be accessed at osf.io/
c5dkj/). Although the brevity of this article precludes

a full discussion of all networks, each analysis pro-
vides useful insight into how comorbidity might func-
tion in each of the relevant disorders.

Networks were calculated with diverse methods. Six
networks were association networks comprising zero-
order correlation values as edges. Six networks used a
graphical LASSO approach estimating a sparse net-
work comprising regularized partial correlations.
These twelve networks were used in Study 2, as their
structures provide sufficient information for simulat-
ing data from a partial correlation approach. Four
networks were DAGs, two which were generated with
a Bayesian approach (for details see McNally et al.,
2017), and two generated with a PCalg approach
(Kalisch et al., 2012). Two networks were generated
with eLASSO, which involves a shrinkage approach
toward a sparse network as with the graphical LASSO
approach but uses a regression approach rather than
partial correlation values. The authors of these studies
apparently identified bridge symptoms via visual
inspection as they did not mention any statistical
approaches for identifying bridges.

Because many studies included a discussion of
potential bridge symptoms, we sought to analyze the
overall concordance between our statistics and the
authors’ reports of potential bridge symptoms. We
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Figure 5. Eliminating nodes with high bridge strength was more effective compared to control conditions in limiting contagion of
symptom activation over successive iterations.
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selected bridge nodes by using a blind 80th percentile
cutoff on the scores of bridge strength to avoid con-
firmation biases in our interpretation of bridge cen-
trality statistics. We then compared these selected
bridge nodes with the bridge nodes reported in each
study (if any). The results of this analysis can be
viewed in Table 3.

Several trends emerged from our analysis of these
18 networks. First, concordance between algorithmic
predictions and researcher insight was high when net-
works were sparse, but diverged for dense networks
and when considerable overlap occurred between
communities. This observation converged with our
initial aim in developing bridge centrality: to aid
researchers and clinicians in the objective identifica-
tion of bridge nodes, especially when networks are
large, complex, or difficult to interpret visually.

Another interesting observation was that several
symptoms emerged as bridge symptoms across mul-
tiple analyses. For example, concentration problems
emerged as bridge symptoms in seven out of the thir-
teen networks that included depression as a comorbid
disorder, and sadness/sad mood emerged in six, even
though the other comorbid disorder varied among
studies (GAD, OCD, complicated grief, and bulimia
nervosa). The emergence of these bridge symptoms in
multiple analyses was further surprising given that
studies used unique, heterogeneous symptom scales
(Fried, 2017). These findings suggest that sad mood
and concentration problems are important transdiag-
nostic problems related to diagnostic comorbidity.

To demonstrate the usefulness of each individual
analysis, we focus on the graphical LASSO network
involving OCD and depression symptoms appearing
in the article by McNally et al. (2017; see Figure 6).
Comorbidity between OCD and depression is
extremely common, with 62.7–78.2% lifetime rates for
those who have been diagnosed with OCD (Millet
et al., 2004; Pinto, Mancebo, Eisen, Pagano, &
Rasmussen, 2006). This comorbidity is associated with
several problematic outcomes, including suicide
attempts (Kamath, Reddy, & Kandavel, 2007; Torres
et al., 2011), functional disability (Storch, Abramowitz,
& Keeley, 2009), and increased OCD symptom sever-
ity (Brown, Lester, Jassi, Heyman, & Krebs, 2015)
among those with comorbid depression. This comor-
bidity may impede treatment in some cases (Foa,
1979; Rickelt et al., 2016). Thus, an understanding of
the symptoms that bridge these disorders could be
highly useful to provide focus to treatments of this
comorbidity.

McNally et al. (2017) presented a regularized partial
correlation network displaying the overlap between
OCD and depression. However, because of the com-
plexity of this network, they were unable to report on
which symptoms are most likely to play a role as
bridge symptoms. Our re-analysis indicated that dis-
tress associated with obsessions, interference due to
obsessions, time spent obsessing, guilt, and sadness
were the likely bridge symptoms in this network. This
information should guide clinicians to focus on obses-
sional (rather than compulsion-related) concerns as
well as guilt and sadness when attempting to treat or
reduce the likelihood of this dangerous comorbidity.

Each individual analysis of bridge symptoms is
similarly useful in elucidating the mechanisms by
which disorders are interconnected. We encourage
researchers to use the information provided in Table
3 as well as additional information on individual anal-
yses available in the supplementary materials to guide
future research on the bridges between the various
mental disorders presented.

Discussion

There are several limitations to our approach. First,
bridge centrality statistics are based upon existing cen-
trality statistics which already exist in network science.
Each of these statistics comes with certain limitations:
for instance, strength centrality may not apply well to
psychometric networks with many negatives edges
(Robinaugh et al., 2016), and betweenness and close-
ness may have limited stability in certain psychomet-
ric networks (Epskamp et al., 2018; Forbes et al.,
2017). However, although we have focused on the val-
idation of these statistics in the field of network psy-
chometrics, the statistics could potentially be used in
fields such as physics or ecology as well as in psych-
ology. Some types of centrality may be best suited for
limited applications: bridge betweenness, for instance,
may be particularly attractive in social networks, but
unattractive in cross-sectional psychometric networks.

Comorbidity is a core issue in the prevention and
treatment of mental disorders. Prevention and reduc-
tion of comorbidity is an important goal for mental
health professionals, and a deeper understanding of
how comorbidity functions in psychopathology is
needed to address this important issue.

The network approach to psychopathology suggests
that bridge symptoms may play a role in the develop-
ment and maintenance of comorbid mental disorders
(Cramer et al., 2010). Consequently, when one dis-
order presents, treating potential bridge symptoms
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may prevent comorbidity. Bridge strength, bridge
betweenness, bridge closeness, and bridge expected
influence are effective tools to detecting bridge symp-
toms. Furthermore, in a simulation approach, detect-
ing bridges with these statistics and focusing
treatment on the detected nodes is effective in pre-
venting the contagion of comorbid disorders. Each of
these statistics can be computed via application of the
networktools R package (Jones et al., 2017); we provide
a brief tutorial in our supplementary materials (osf.io/
c5dkj/). We encourage the use of these statistics as
well as other innovations in network science for the
identification of bridge symptoms to improve research
and practice regarding mental disorder comorbidity.

In conclusion, our bridge centrality statistics pro-
vide an objective, quantitative index to identify symp-
toms likely to foster diagnostic comorbidity. Our
measures converge with informal clinical impressions
of what symptoms likely function as bridges between
syndromic communities of symptoms when networks
are sparse, and likely outperform clinical impressions
when networks are complex and dense.
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