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ABSTRACT

Forbes, Wright, Markon, and Krueger claim that psychopathology network characteristics
have “limited” or “poor” replicability, supporting their argument primarily with data from
two waves of an observational study on depression and anxiety. They developed “direct
metrics” to gauge change across networks (e.g., change in edge sign), and used these
results to support their conclusion. Three key flaws undermine their critique. First, nonrepli-
cation across empirical datasets does not provide evidence against a method; such evalua-
tions of methods are possible only in controlled simulations when the data-generating
model is known. Second, they assert that the removal of shared variance necessarily
decreases reliability. This is not true. Depending on the causal model, it can either increase
or decrease reliability. Third, their direct metrics do not account for normal sampling vari-
ability, leaving open the possibility that the direct differences between samples are due to
normal, unproblematic fluctuations. As an alternative to their direct metrics, we provide a
Bayesian re-analysis that quantifies uncertainty and compares relative evidence for replica-
tion (i.e., equivalence) versus nonreplication (i.e, nonequivalence) for each network edge.
This approach provides a principled roadmap for future assessments of network replicability.
Our analysis indicated substantial evidence for replication and scant evidence for
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nonreplication.

Introduction

The ability to replicate previous findings is a pre-
requisite for a self-correcting psychological science.
Although not even the most careful and robust sci-
ence can claim to be perfectly replicable, scientists
should strive to improve replicability. Examples of
helpful practices include providing publicly available
de-identified data and code, shifting values toward
high-quality research rather than merely surprising or
novel findings, using robust statistical techniques that
appropriately model uncertainty and reduce false-posi-
tives, and avoiding questionable practices such as “p-
hacking” and “HARKing” (Munafo et al, 2017).
Encouragingly, such practices seem to be spreading
within psychology (Vazire, 2018).

During a similar timeframe, the network approach
to mental disorders has emerged as a growing per-
spective in clinical psychology (for reviews see
Contreras et al, 2019; Fried & Cramer, 2017;

Robinaugh et al., 2020). The network approach views
mental disorders as emergent phenomena arising
from causal interactions among symptoms rather than
as underlying latent categorical or dimensional entities
functioning as the common causes of the symptoms
signifying  their = presence  (Borsboom, 2017).
Proponents of network theory have commenced their
investigation into complex systems of psychopathology
by estimating cross-sectional dependence graphs
among symptoms and other aspects of mental disor-
ders (Contreras et al., 2019).

As in any area of research, psychological network
analysts must develop best practices for producing
replicable and reliable results. Indeed, this concern
drove the introduction of network regularization
(Epskamp & Fried, 2018), permutation testing for net-
work differences (van Borkulo et al., 2017), network
bootstrapping (Epskamp et al., 2018), and Bayesian
network estimation (Williams et al, 2018). After
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analyzing two psychiatric epidemiology data sets,
Forbes et al. concluded that “psychopathology net-
works have limited replicability” (Forbes et al., 2017a,
p. 969; Forbes et al, 2017b). In a reanalysis of the
data, Borsboom et al. (2017, p. 990) concluded that
the data “supported the exact opposite of [Forbes
et al’s] conclusion: Psychopathology networks repli-
cate very well.”

Revisiting this controversy with new data and argu-
ments, Forbes et al. (2019) repeat their claim that net-
work characteristics in psychopathology have “poor
replicability” (p. 1) or “limited replicability” (p. 4). In
support of their conclusion, they performed network
analysis on two waves of data from an observational
study on depression and anxiety, as well as four data
sets on posttraumatic stress disorder (PTSD). They
first use extant network analytic methods for assessing
replicability, showing that network characteristics are
generally stable and robust. They then use their alter-
native “direct metrics” (p. 1) for assessing replicability
to support their claim that psychopathology symptom
network characteristics have limited replicability. The
purpose of our commentary is to discuss three appar-
ent flaws in Forbes et al’s critique, and to offer a
Bayesian alternative to the direct metrics devised by
Forbes et al.

First, observed differences across empirical data
sets cannot provide evidence for or against the use of
a method, regardless of how rigorously conducted.
Observed differences across data sets may not only
signify meaningful differences between samples (i.e.,
nonreplication) but they also may signify random
sampling variation, poor reliability in measurement,
or a variety of other explanations. However, adjudicat-
ing among these possibilities is nontrivial and unad-
dressed by Forbes et al.

Second, they incorrectly assert that the removal of
shared variance between variables via statistical con-
trol (e.g., use of partial correlations) inherently leads
to reduced reliability. In fact, appropriate statistical
control increases reliability. Statistical control only
reduces reliability when used inappropriately vis-a-vis
the underlying causal model, which remains unknown
in this case.

Third, their direct metrics presuppose that any
variation in parameter estimates across samples signi-
fies nonreplication. Yet sampling inevitably results in
departures from invariance; even if two samples are
derived from the same population, one cannot expect
them to be equivalent. Explicitly modeling the amount
of expected variation is necessary for any meaningful
interpretation of such “direct metrics.” Without this

context, it is impossible to tell whether a difference in
a parameter estimate in a second data set (ie., a
“direct metric”) provides information inconsistent
with its estimate in the first data set (i.e., nonreplica-
tion). Accordingly, we provide a Bayesian analysis
that quantifies this uncertainty, providing a statistic-
ally sound roadmap for future researchers. Our
reanalysis of Forbes et al’s (2019) data revealed sub-
stantial evidence for replication for network edges and
very little evidence for nonreplication.

The problem with evaluating statistical
methods with empirical data

Forbes et al. use both established and novel methods
to evaluate the replicability of several data sets, con-
cluding that network analysis is not a replicable
method. Unfortunately, regardless of whether Forbes
et al. use the existing suite of methods or alternative
metrics of replication, the very premise of evaluating a
method by using empirical data is problematic.
Consider the following thought experiment:
Researcher A measures two psychological variables in
a given sample. Upon performing a multiple linear
regression controlling for several other key variables,
he concludes that the two variables are significantly
related. Researcher B then measures the same varia-
bles in the same group of individuals sometime later.
After repeating the identical analysis, she finds that
the two variables are not significantly related.
Researcher B will likely consider multiple hypotheses
that could explain the discrepant results (e.g., true dif-
ferences between timepoints, random sampling vari-
ability, unreliable measurement), but she will not
conclude that multiple linear regression per se is an
unreliable statistical method with limited replicability.
Methods can best be evaluated via systematic simu-
lations when investigators can directly control the
model generating the simulated data. Importantly, the
generating properties of simulations are known to
investigators, whereas those of empirical data are not.
Accordingly, simulations can establish the statistical
confidence associated with a parameter given certain
assumptions. Forbes et al. criticize previous simulation
studies for bearing “little resemblance to ... real world
psychopathology data” (p. 16) and suggest that the
performance of network methods should be evaluated
via simulations based on real-world psychopathology
network structures. Such inquiry would usefully add
to the growing body of network simulation studies
(e.g., Epskamp et al., 2018; Williams et al.,, 2019). In
contrast, further arguments about network methods



based on empirical data alone are unlikely to
be productive.

Does statistical control reduce reliability?

Forbes et al. claim that statistical control via removal
of shared variance inherently diminishes reliability.
This claim is incorrect. For example, imagine that we
are interested in assessing an individual’s basal blood
pressure. If we control for relevant covariates, such as
recent caffeine consumption and physical activity, we
will increase the reliability of our assessment over
repeated measurements, not decrease it. These causal
covariates affect momentary blood pressure measure-
ments, and removing shared variance increases the
reliability of assessment of basal blood pressure.
Moreover, adjusting for these causal covariates will
increase the reliability of predicted outcomes (e.g.,
high basal blood pressure predicting heart attacks).

On the other hand, statistical control can indeed
lead to unreliable results in other causal models. For
example, statistically controlling for the presence of
thunder would lead to an unreliable assessment of
lightning (i.e., leaving only measurement error or
lightning seen by the deaf). Forbes et al. conclude that
statistical control leads to unreliability, but this is only
true given certain assumptions regarding the underly-
ing causal model. Statistical control can lead to either
increased or decreased reliability depending on the
true causal structure among variables.

Interpreting all variability as nonreplication

When estimating parameters that pertain to a sample
(or samples), statisticians must carefully correct for
random sampling variability before making assertions
about the population. A familiar example is a null
hypothesis significance test—if the p-value falls below
a certain threshold, researchers have minimum justifi-
cation for making an inference about the population;
otherwise they cannot.

Forbes et al. overlooked this difference when mak-
ing claims about the nonreplication of networks in
their samples. Their direct metrics conflate sampling
variability and true variability, making them uninter-
pretable. They regard any difference in the presence
or direction of an edge between the two networks as a
genuine difference between them. Ironically, this
means that the direct metrics presented by Forbes
et al. are themselves not statistically replicable. As
shown by the permutation test employed in their own
analysis (p. 14), none of the direct metrics of
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differences between the two networks met a minimum
threshold of statistical significance. In other words,
Forbes et al. make claims about the overinterpretation
of network parameters by interpreting parameters that
are themselves statistically nonsignificant.

We suspect that most of these “changes” between
networks arose from ordinary fluctuation between the
samples. For instance, imagine that the true value of a
given edge in a generating model is 0.005. Even if this
edge were evaluated across several very large samples,
it would fluctuate between a negative and positive
value (or fluctuate between a zero and nonzero value
in a regularized network). In this scenario, the vari-
ability is entirely due to expected sampling error,
rather than to any inherent unreliability of partial cor-
relations in psychological data." Unfortunately, their
direct metrics of replication conflate these sources of
variability. We incorporate this key point into the fol-
lowing analysis to perform a statistically principled
test of replication between the networks.

Operating within a Bayesian framework, Williams
et al. (2020) have devised an alternative direct test of
replicability across samples that incorporates uncer-
tainty. This method directly accounts for normal var-
iations in sampling and provides a Bayes Factor
assessing the degree of evidence for either equivalence
or nonequivalence (Williams et al., 2020). It resembles
the Network Comparison Test permutation method
that generates a p-value for each edge comparison,
noting when edges significantly differ between net-
works. However, this method can assess relative evi-
dence between competing models which allows for
richer inference than merely rejecting or failing to
reject the null hypothesis. This is accomplished by
viewing replication in terms of predictions. On the
one hand, there is a restricted model (H,;) that pre-
dicts replication (equivalence), whereas on the other
hand, there is an unrestricted model (H,) interpretable
as “not H;” (nonequivalence/nonreplication).

Using the BGGM R package (Williams & Mulder,
2019a), we computed Bayes Factors (H; = equiva-
lence, H, = nonequivalence) for each pairwise partial
correlation in the depression and anxiety samples fur-
nished by Forbes et al.”> These methods are introduced

'As a side note, the expected sampling variability of estimates can be
quantified using expected network replicability, which calculates the
expected replicability assuming the data indeed arises from a network
structure (i.e., when assumptions are not violated; see Williams, 2020). In
a preliminary analysis, we computed thesample size needed to achieve an
expected network replicabilityof 80% given the present network structure.
We estimated thata sample size of roughly 1200 would be needed (or
2800 ifBonferroni corrections were used).

2We focused on the depression and anxiety sample data because it was
indeed sampled from the same population, albeit at different time points.
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Figure 1. Relative evidence for replication or nonreplication using Bayes Factors. Replicated edges appear in solid blue and non-
replicated edges appear in solid red. Edges that did not reach substantial evidence for either hypothesis are in dotted black.

in greater detail in Williams and Mulder (2019b) and
Williams et al. (2020). To test differences between
partial correlations, the method uses the novel matrix-
F prior distribution which is a generalization of the
customary Wishart prior distribution for the inverse
of the covariance matrix (X). The prior distribution
for a given partial correlation is approximately
Beta(g, g), where 0 governs the width of the prior
distribution. The idea is to first estimate the partial
correlations for each group, compute the posterior
distribution for the partial correlation difference, and
then use the implied prior distribution of that differ-
ence to test the exact equality constraint of group
equality. For each model, we drew 5,000 samples from
the posterior distribution with a Gibbs sampler imple-
mented in BGGM. The chains converged, as indicated

On the other hand, the PTSD data differ in numerous non-trivial ways,
including country of origin, trauma type, and gender composition.

by scale reduction factors below 1.10 (Brooks &
Gelman, 1998). Convergence was also determined by
visually inspecting the trace plots, available in the
Supporting Information.

We first considered an unrestricted model that was
essentially agnostic to the size of the partial correla-
tions—i.e., a nearly uniform distribution between —1
and 1 (Marsman & Wagenmakers, 2017). This was
accomplished by setting 6 = 3 which results in a Beta
prior distribution that is zero centered with a standard
deviation of 0.50. For convenience of interpretation,
we used a cutoft (Bayes Factor = 3) to indicate evi-
dence in favor (or opposed) to the edges being
equivalent. These results appear in Figure 1. For 89%
of edges, Bayes Factors indicated evidence in favor of
the hypothesis that the edges were equivalent between
the two samples. For 9% of the edges, the Bayes
Factors indicated that there was insufficient informa-
tion to conclude in favor of either equivalence or non-
equivalence. We found evidence in favor of
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Figure 2. Sensitivity analysis for the Bayesian analysis. The decision rate (y-axis) is the proportion of edges (out of 120) that sup-
ported either the replication model, the nonreplication model, or neither (Undecided). The width of the unrestricted model (x-axis)
is the standard deviation of a beta distribution between = 1. Thus, larger values approach a uniform distribution.

nonequivalence for only two edges (i.., less than 2%
of the total edges). The exact values of Bayes Factors
are tabulated in the Supporting Information. We also
conducted a sensitivity analysis to assess the influence
of modifying the Bayes Factor threshold, indicating
results consistent with our interpretation that evidence
for nonequivalent edges was rare. A figure displaying
this sensitivity analysis is available in the Supporting
Information.

These results are influenced by assumptions made
regarding the unrestricted model® (Carlsson et al,
2017). This is an advantage, not a limitation. That is,
in this case, we can rigorously evaluate the competing
replication and nonreplication models across a range
of assumptions. Results across a broader range of
assumptions appear in Figure 2.* The nonreplication
model indicates robustness, in that, at most, nonrepli-
cation was supported for 7% of the edges. On the
other hand, the replication model was more sensitive
to the choice of prior distribution, with the support

3Note that nonreplication will also be influenced by the chosen alpha
level, and in the case of regularized estimation, there are many factors
that influence performance (Williams et al., 2019).

*We analyzed the data assuming both continuous and ordinal data. The
presented results were robust to this choice, and as such, we presented
those from assuming continuous data.

ranging from approximately 50 to 90%. In other
words, varying the assumptions seemed to change
whether sufficient evidence emerged for edge replica-
tion (versus insufficient evidence, “undecided”).
Finding insufficient evidence for some edges is unsur-
prising given the limited power of the data sets. In
addition, we tested each partial correlation individu-
ally, which presents the issue of multiple comparisons.
However, applying a correction would simply result in
more inconclusive evidence (i.e., “undecided”), further
suggesting that the sample is insufficient to make
strong claims about network replicability. In sum-
mary, across the various choices in assumptions, we
found little evidence indicating nonreplication in the
depression and anxiety samples.’

Together, these results complement key aspects of
this work. First, in direct opposition to Forbes et al.’s
claim that “key differences...indicated limited

*We did not have access to the original data for the PTSD networks and
were therefore unable to conduct tests directly on these data. Simulating
data based on sample size and correlation matrices allowed for an
approximate test, in which we tested relative evidence for two
hypotheses: (1) that the edges were equivalent across all four networks
[omnibus equality] or (2) that the edges differed in at least one network.
The test yielded substantial evidence for replication for 90 edges and
substantial evidence for heterogeneity (i.e., omnibus test across all four
networks) for 19 edges. Results of the robustness analysis for the PTSD
networks appear in the Supporting Information.
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reliability and replicability in the networks” (p. 13),
we found very little evidence for the nonreplication
model in these data. The replication model fared
much better. At best, there was overwhelming support
for replication between the two networks overall, con-
sistent with the conclusion of Borsboom et al. (2017).
At worst, the results point toward either the replica-
tion model or neither model (“undecided”, ie., an
insufficient sample size to determine replication or
nonreplication). This again stands in direct contrast to
the claims of Forbes et al.

Conclusion

Although it makes sense to ask whether network ana-
lytic methods are suitable for psychopathology data,
the analysis by Forbes et al. is uninformative for sev-
eral reasons. First, empirical results cannot directly
inform statistical practice, even in the best of scen-
arios. Carefully controlled simulations are necessary.
Second, the impact of statistical control on reliability
depends on the causal structure of the data. If psycho-
pathology symptoms arise from a common source, the
statistical control employed in network analysis would
indeed be problematic. However, if psychopathology
symptoms instead influence one another in a causal
system, as hypothesized in the network theory of
mental disorders, appropriate statistical control could
increase reliability. Third, the data presented by
Forbes et al. do not show evidence for nonreplication
in the first place. Their direct metrics overestimate
differences across samples by counting any change in
sign or regularization as evidence for nonreplication,
conflating nonreplication with normal sampling vari-
ability. Such changes are expected due to normal vari-
ation across samples, especially for edges that have a
true value close to zero. When taking normal sam-
pling variation into account, Bayesian hypothesis tests
indicated substantial evidence for replication and very
little evidence for nonreplication in the pri-
mary analysis.

Researchers have a powerful suite of methods to
perform tests on the stability and replicability of net-
work analyses. These methods continue to evolve as
they are vetted in various simulated scenarios. We
expect that significant heterogeneity exists within psy-
chopathological systems; identifying and studying it is
a major goal of network analysis. Network researchers
should continue to calculate and explicitly report sta-
bility metrics, confidence intervals, and other validated
measures of reliability. Moreover, they should judi-
ciously select nodes and interpret parameter estimates

carefully. In conclusion, although psychological net-
work analysis faces many challenges, we find no evi-
dence that limited replicability is among them.
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