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Visualizing Psychological Networks:
A Tutorial in R
Payton J. Jones*, Patrick Mair and Richard J. McNally

Department of Psychology, Harvard University, Cambridge, MA, United States

Networks have emerged as a popular method for studying mental disorders.

Psychopathology networks consist of aspects (e.g., symptoms) of mental disorders

(nodes) and the connections between those aspects (edges). Unfortunately, the visual

presentation of networks can occasionally be misleading. For instance, researchers

may be tempted to conclude that nodes that appear close together are highly related,

and that nodes that are far apart are less related. Yet this is not always the case. In

networks plotted with force-directed algorithms, the most popular approach, the spatial

arrangement of nodes is not easily interpretable. However, other plotting approaches

can render node positioning interpretable. We provide a brief tutorial on several methods

including multidimensional scaling, principal components plotting, and eigenmodel

networks. We compare the strengths and weaknesses of each method, noting how to

properly interpret each type of plotting approach.

Keywords: network analysis, network psychometrics, psychopathology, multidimensional scaling, graph theory

Psychologists have witnessed an explosion of research utilizing network analysis to
measure psychological constructs (see Fried et al., 2017 for a review). Networks, which consist of
nodes connected to each other by edges, are a useful tool for visualizing and interpreting relational
data. Diverse statistical procedures can be applied to analyze network structures. For example,
researchers can determine which nodes are most highly connected or whether the network clusters
into separate communities of nodes.

Unlike social networks where one directly observes connections between individuals (e.g.,
friends, enemies; Burt et al., 2013), the edges in psychological networks require statistical
estimation, often partial correlations reflecting the strength of association between nodes. In
visualizations, green (or blue) edges represent positive associations, and red edges represent
negative associations. The thickness of an edge corresponds to the strength of association. Dubbed
“network psychometrics,” (Epskamp et al., 2016; Fried et al., 2017), this approach has stimulated
many studies estimating networks of various psychological constructs.

In contrast to traditional approaches to psychopathology that regard symptoms as reflecting the
presence of a latent disease entity that causes their emergence and covariance, network researchers
view mental disorders as emerging from interactions among symptoms (Cramer et al., 2010;
Borsboom and Cramer, 2013; Borsboom, 2017). Researchers have therefore endeavored to model
disorders as causal systems. Theory motivating this type of analysis posits that mental disorders
are phenomena emerging from the causal associations between biological, social, and affective
components (Jones et al., 2017).

However, network analysis has not been confined to abnormal psychology. Researchers have
applied network analysis in studies on personality (Cramer et al., 2012; Costantini et al.,
2015a,b, 2017) and attitudes (Dalege et al., 2016), arguing that traits and attitudes may be
better represented as emergent properties of complex networks rather than as underlying latent
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variables (e.g., dimensional personality factors). Indeed, as this
approach becomes more widely known, it is likely that many
more psychological constructs will soon be characterized as
emergent properties of complex networks (e.g., Barabási, 2011).
Thus, understanding the nuances of network analysis is of
growing importance in psychology.

In this article, we explore several methods for visualizing
networks. Each has advantages and disadvantages. Some
foster intuitive spatial interpretation of network structure,
whereas others provide little spatial information, but facilitate
clarity and aesthetics of network edges. Our tutorial applies
exclusively to network visualization; network computation
procedures such as node centrality remain identical regardless
of the visualization method one uses. We provide brief,
simple explanations and examples suitable for psychological
researchers who plan to use or interpret network analyses.
As this article is not an advanced statistical tutorial, we
relegate formulas and other detailed information to an
Data Sheet 1 (Appendix). We provide accompanying R
code (R Core Team, 2018) in the text throughout this
tutorial (Data Sheet 3).

VISUAL (MIS)INTERPRETATION OF
NETWORKS

Networks enable the visualization of complex, multidimensional
data as well as provide diverse statistical indices for interpreting
the resultant graphs (e.g., McNally, 2016; Haslbeck andWaldorp,
2017; Jones, 2017; van Borkulo et al., 2017). However,
depending on how the network is plotted, visual interpretation
of the position of nodes can easily lead one astray. Four
misunderstandings about the spatial placement of nodes are
common.

First, researchers may assume that the graphical spacing of
two connected nodes signifies the magnitude of their association.
This is not always true. Depending on the plotting method, two
strongly associated nodes may appear far apart, whereas two
weakly associated nodes may appear close together.

Second, researchers may mistakenly assume that a node’s
placement along the X and Y axes signifies a meaningful position
on a coordinate plane. For example, consider a network in which
OCD symptoms cluster on the right and depression symptoms
cluster on the left. A researcher might erroneously conclude that
the depression symptoms nearer to the right are “more OCD-
like” than those toward the left. The X and Y position of nodes
cannot always be interpreted in this way; position of nodes does
not necessarily correspond to a meaningful coordinate plane.

Third, researchers may erroneously conclude that a node
positioned in the center of the network is a central node.
Node centrality metrics measure the “importance” of a node
in a network, not its physical position in the graph. For
example, strength centrality reflects the number and magnitude
of connections a node has to other nodes in the network. A
node with many strong connections may appear anywhere in the
graph, not necessarily in its center. Conversely, nodes appearing

near the center of a graph need not be highly central in the
network.

Fourth, researchers may incorrectly assume that a network
study failed to replicate because the network in the new study
appears dramatically different than the original one. Not all
plotting methods are stable, and some can be rotated arbitrarily.
This can lead to networks that appear wildly different, even
though their statistical structures are similar.

Depending on the visualization method, any or all of
these assumptions may be incorrect. Researchers can minimize
misinterpretations by careful choice of visualization methods
and raising awareness about how to interpret each type of
visualization accurately.

TWO PRACTICAL EXAMPLE DATASETS

In order to demonstrate different types of visualizations, we
will use two example datasets from the literature. Both datasets
contain information on symptoms of obsessive-compulsive
disorder (OCD) and depression. OCD and depression are
frequently comorbid (Millet et al., 2004). Moreover, comorbid
depression is associated with aggravated OCD symptoms and
higher rates of suicide (Torres et al., 2011; Brown et al., 2015).
Understanding the complex relationships among OCD and
depression symptoms may provide valuable insight for clinicians
and researchers.

McNally et al. (2017) used network analysis to examine OCD
and depression symptoms in adults. A dataset of these symptoms
in 408 adults is available in the MPsychoR package (Mair, 2018).
The 26 symptoms were recorded using Likert style self-report
scales (Y-BOCS, QIDS-SR; see McNally et al., 2017 for details).
Let’s load the data (Data Sheet 2).

library("MPsychoR")

data(Rogers)

dim(Rogers)

[1] 408 26

Jones et al. (2018) replicated this analysis in a smaller sample
of adolescents. This dataset is also included in the MPsychoR
package (Mair, 2018). This replication dataset of 87 adolescents
provides an opportunity to compare and contrast visualizations
with the sample fromMcNally et al. (2017).

data(Rogers_Adolescent)

dim(Rogers_Adolescent)

[1] 87 26

To preserve space in network visualizations, we will assign a
number to each variable for the labels. Numbering and variable
descriptions can be found in Table 1.
colnames(Rogers)

<- colnames(Rogers_Adolescent) <- 1:26

FORCE-DIRECTED ALGORITHMS (e.g.,
FRUCHTERMAN-REINGOLD)

Most network studies in psychopathology have used the
Fruchterman-Reingold (FR) algorithm to plot graphs
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TABLE 1 | Nodes in Adult and Adolescent OCD & Depression Networks.

Number Symptom (Depression) Number Symptom (OCD)

1 Sleep-onset insomnia 17 Time consumed by obsessions

2 Middle insomnia 18 Interference due to obsessions

3 Early morning awakening 19 Distress caused by obsessions

4 Hypersomnia 20 Difficulty resisting obsessions

5 Sadness 21 Difficulty controlling obsessions

6 Decreased appetite 22 Time consumed by compulsions

7 Increased appetite 23 Interference due to compulsions

8 Weight loss 24 Distress caused by compulsions

9 Weight gain 25 Difficulty resisting compulsions

10 Concentration

impairment

26 Difficulty controlling compulsions

11 Guilt and self-blame

12 Suicidal thoughts, plans,

or attempts

13 Anhedonia

14 Fatigue

15 Psychomotor retardation

16 Agitation

(Fruchterman and Reingold, 1991). The FR algorithm is a
force-directed graph method (see also Kamada and Kawai, 1989)
akin to creating a physical system of balls connected by elastic
strings. An elastic string connecting two nodes pulls them closer
together, while other nodes draw them apart in other directions.
This results in a visually appealing graph where nodes generally
do not overlap and edges have approximately the same length.

The aim of force-directed algorithms is to provide
aesthetically pleasing graphs by minimizing the number of
crossing edges and by positioning nodes so that edges have
approximately equal length. Importantly, the purpose of plotting
with a force-directed algorithm is not to place the nodes in
meaningful positions in space. Rather, the intent is to position
nodes in a manner that allows for easy viewing of the network
edges and clustering structures.

When plotting with the FR algorithm or another force-
directed method, one must refrain from making any spatial
interpretation. Erroneous interpretations based on spatial
arrangement are a common trap as it is difficult to ignore space
in a visualization.

The FR algorithm is a default plotting method in the
qgraph R package (Epskamp et al., 2012), and is thus very
easy to implement. We will demonstrate by using a zero-order
correlation network of adults with OCD and depression. The
resultant network appears in Figure 1.

library("qgraph")

adult_zeroorder <- cor(Rogers)

qgraph(adult_zeroorder, layout="spring",

groups = list(Depression = 1:16,

"OCD" = 17:26),

color = c("lightblue",

"lightsalmon"))

FIGURE 1 | Force-directed plotting with Fruchterman–Reingold.

Force-directed algorithms produce visually appealing plots in
which nodes rarely overlap. It is important to keep in mind that
the positioning of nodes in a force-directed algorithm cannot be
interpreted.

MULTIDIMENSIONAL SCALING OF
NETWORKS

Multidimensional scaling (MDS) has a long history and has been
applied in a wide variety of academic arenas (Torgerson, 1958;
Kruskal, 1964; Borg and Groenen, 2005; Borg et al., 2018). MDS
represents proximities among variables as distances between
points in a low-dimensional space (e.g., two or three dimensions;
Mair et al., 2016). Proximity is an umbrella term for “similarities”
between variables (e.g., correlation) or “dissimilarities” (e.g.,
Euclidean distance). Because MDS helps represent complex data
in low-dimensional space, it dovetails precisely with the goal of
visual presentation of complex psychological networks. That is,
we can use MDS to represent proximities in a two-dimensional
space (e.g., X & Y) to produce two-dimensional network
plots. MDS is particularly useful for understanding networks
because the distances between plotted nodes are interpretable
as Euclidean distances. That is, highly related nodes will appear
close together, whereas weakly related ones will appear far apart.

In MDS, we consider a matrix of proximities between objects
(in our case, nodes). The input data for MDS can be either
directly observed proximities or derived proximities (for details
see Mair et al., 2016). Most psychometric networks provide us
with a ready-made matrix of derived proximities (in this case,
similarities): the network edges. Network edges are usually zero-
order or partial correlations between pairs of nodes. Here, we will
again use a zero-order correlation network as our weights matrix.

Frontiers in Psychology | www.frontiersin.org 3 September 2018 | Volume 9 | Article 1742

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Jones et al. Visualizing Networks Tutorial

adult_zeroorder <- cor(Rogers)

Because the smacof R package (De Leeuw and Mair, 2009)
requires dissimilarities (rather than similarities) as input, we
will convert the correlation matrix into a dissimilarity matrix
(Gower and Legendre, 1986; see theData Sheet 1 (Appendix) for
a formula). The result is a symmetric dissimilarity matrix 1 with
n(n-1)/2 dissimilarities (in the lower diagonal portion).

library("smacof")

dissimilarity_adult <-

sim2diss(adult_zeroorder)

After determining our dissimilarity matrix, we then locate
points (configuration matrix) in a two-dimensional space such
that the distances between the objects (nodes) approximate
a transformation of the dissimilarities as closely as possible,
given the constraints of a two-dimensional solution. The
configuration matrix for this specific application will be a matrix
X of dimension n x 2 with elements that represent Cartesian
coordinate points with which to plot the nodes. The MDS
configuration matrix provides the basis for visualization, not for
any network calculations. Although in this tutorial we always
constrain the configuration matrix to two dimensions (for two-
dimensional plots), it should be noted that MDS can also be used
to generate configurations in higher dimensions.

adult_MDS <- mds(dissimilarity_adult)

head(round(adult_MDS$conf, 2)) # top of

# configuration matrix

D1 D2

1 −0.21 0.53

2 −0.80 0.03

3 −0.70 0.33

4 0.25 −0.77

5 −0.53 −0.07

6 0.07 0.78

Transformations
The configuration matrix is fit on a transformation of the
input dissimilarity matrix. There are several different types of
transformations available. It is useful to have a variety of options
for transformation so that we can choose a transformation which
fits our network data. Some common transformation functions
include ordinal MDS, interval MDS, ratio MDS, and spline
MDS. Ordinal MDS uses a monotone step function. Ratio MDS
uses a linear regression with an intercept of 0. Interval MDS is
also linear but allows the intercept to vary. Spline MDS uses a
monotone integrated spline. These transformations are described
in greater detail in Mair et al. (2016).

In the case of psychometric networks, where we can
reasonably assume that there is some metric information in the
proximities, we can choose the transformation from a data-
driven perspective. As with fitting any distribution, one should
choose a transformation function which is both parsimonious
and provides a good fit to the data. Ordinal MDS usually provides
the best goodness-of-fit, but is the least parsimonious. In contrast,
ratio MDS is parsimonious, but may fit poorly to some networks.
We can use Shepard diagrams (Figure 2) to visualize MDS fit and

to determine the preferred transformation function (Mair et al.,
2016).

adult_MDS_ordinal <- mds(dissimilarity_adult,

type="ordinal")

plot(adult_MDS_ordinal, plot.type = "Shepard",

main="Ordinal")

text(1.1,0.3, paste("Stress =",

round(adult_MDS_ordinal$stress,2)))

adult_MDS_ratio <- mds(dissimilarity_adult,

type="ratio")

plot(adult_MDS_ratio, plot.type = "Shepard",

main="Ratio")

text(1.1,0.3, paste("Stress =",

round(adult_MDS_ratio$stress,2)))

adult_MDS_interval <- mds(dissimilarity_adult,

type="interval")

plot(adult_MDS_interval, plot.type = "Shepard",

main="Interval")

text(1.1,0.3, paste("Stress =",

round(adult_MDS_interval$stress,2)))

adult_MDS_mspline <- mds(dissimilarity_adult,

type="mspline")

plot(adult_MDS_mspline, plot.type = "Shepard",

main="Spline")

text(1.1,0.3, paste("Stress =",

round(adult_MDS_mspline$stress,2)))

Shepard diagrams allow us to visualize how well our
MDS configuration fits our dissimilarity matrix. When the
dissimilarities align in a linear fashion, a ratio or interval MDS
is most appropriate. In other cases, a nonlinear transformation
such as ordinal MDS or spline MDSmay be more appropriate. In
this case, we decided to use a spline MDS. The normalized stress
values (plotted in each graph) can help guide us in deciding
which transformation provides the best fit.

A value known as stress indicates how well one’s data can be
represented in two-dimensions [see Data Sheet 1 (Appendix)].
In this tutorial, we will use the stress-1, which is a normalized
version of stress. When the stress is low, the graph is
interpretable. That is, the spacing between two nodes
approximately signifies the strength of their association.
When the stress is higher, we must be much more cautious about
these types of interpretation. A high stress indicates that the
nodes cannot be accurately spaced in just two dimensions. For
additional guidance on interpreting stress, see Mair et al. (2016).

adult_MDS_mspline$stress

[1] 0.189

The final product of an MDS configuration is a two-
dimensional space in which distance between nodes represents
the approximate dissimilarity of nodes based on their edges. For
example, in our zero-order correlation network, the distance
between two nodes varies inversely with their strength of
association. Hence, strongly associated nodes appear close
together, while weakly associated or negatively associated nodes
appear far apart.

We can produce such a plot by entering the MDS
configuration into the “layout” argument of qgraph or plot.igraph
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FIGURE 2 | Shepard Diagrams.

(Csardi and Nepusz, 2006; Epskamp et al., 2012). We will also put
the stress-1 value as text on the plot, for easy reference. The result
appears in Figure 3.

qgraph(adult_zeroorder,

layout=adult_MDS_mspline$conf,

groups = list(Depression = 1:16,

"OCD" = 17:26), color = c("lightblue",

"lightsalmon"), vsize=4)

text(-1,-1, paste("Stress=",

round(adult_MDS_mspline$stress,2)))

McNally et al. (2017) examined a network of OCD and depression
symptoms in adults. Here, a zero-order correlation network of
symptoms is graphed according to a spline MDS configuration.
The distance between nodes represents how close they are in
terms of the zero-order correlations.

One problem with Figure 3 is that some of the strongly
associated nodes overlap, obscuring the edges between those
two nodes. Researchers concerned about overlap obscuring
important information can reduce the size of the nodes or use
points instead of circles to represent variables. Let’s produce a plot
with points (instead of circles) for nodes. We will use the textplot

function in the wordcloud R package (Fellows, 2014) to ensure
that node labels do not overlap (See Figure 4).

library("wordcloud")

qgraph(adult_zeroorder,

layout=adult_MDS_mspline$conf,

groups = list(Depression = 1:16,

"OCD" = 17:26),

color = c("lightblue", "lightsalmon"),

vsize=0, rescale=FALSE, labels=FALSE)

points(adult_MDS_mspline$conf, pch=16)

textplot(adult_MDS_mspline$conf[,1]+.03,

adult_MDS_mspline$conf[,2]+.03,

colnames(adult_zeroorder),

new=F)

This figure is identical to Figure 3, but uses points to plot nodes.
This avoids overlap, although some edges may remain difficult to
see if the points are very close together.

Multidimensional scaling can be applied purely on the
edge values in the network. This technique can be used for
both psychometric networks and directly derived (e.g., social)
networks. In other words, one can generate an MDS network
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FIGURE 3 | MDS configuration of a zero-order correlation network.

plot based purely on the network edges, without having access
to original participant data.

If one computes an MDS configuration based on the edges,
the spacing between nodes is proportional to the strength of the
edges. Thus, the information provided by the node spacing is
redundant – represented once in the edge thickness, and yet again
by the node spacing. This redundancy can facilitate quick and
intuitive interpretation, but does not add new information to the
plot.

If researchers want to provide additional information with the
spacing of their nodes, they can base their MDS on a different
type of similarity matrix derived from the original data. For
example, a network could be plotted with edges that represent
partial correlations, with spacing based on zero-order correlations.
In other words, we could plot our partial correlation network,
complete with edges, in a zero-order correlation space. The
reverse is also possible; one could use zero-order correlations as
edges, and convert a partial correlation matrix into dissimilarities
as input for an MDS plotting configuration. The researcher thus
maximizes the data conveyed by the graph by using the space to
indicate information that is not given in the edge structure. As an
example, let’s compute a graphical LASSO network of the adult
network, as was done by McNally et al. (2017), but use the zero-
order MDS configuration from before to plot the positioning of
the nodes (See Figure 5).

adult_glasso <- EBICglasso(cor(Rogers), n=408)

qgraph(adult_glasso,

layout=adult_MDS_mspline$conf,

groups = list(Depression = 1:16,

"OCD" = 17:26),

color = c("lightblue", "lightsalmon"),

vsize=4)

text(-1,-1, paste("Stress=",

round(adult_MDS_mspline$stress,2)))

FIGURE 4 | MDS configuration of a zero-order correlation network, with

nodes plotted as points.

FIGURE 5 | Graphical LASSO network, plotted with MDS configuration based

on zero-order correlations.

Network of OCD and depression symptoms in adults (McNally
et al., 2017). Here, we plot edges according to a graphical LASSO
network, but use the graphical space between nodes to convey
how closely associated nodes are in terms of the zero-order
correlations based on an MDS configuration. In other words,
nodes that are close together are similar in terms of zero-order
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FIGURE 6 | Two networks plotted using MDS configurations and Procrustes.

correlations; nodes that share a thick edge are similar in terms of
regularized partial correlations.

Procrustes
As noted earlier, one particularly challenging aspect of node
placement is providing an accurate visual comparison between
two networks. Two or more configurations can be brought
into a similar space and compared by using the Procrustes
algorithm [seeData Sheet 1 (Appendix); see also Davison, 1985].
This procedure, named after Poseidon’s son in Greek mythology
(“Procrustes, the stretcher”), removes statistically “meaningless”
differences (i.e., they do not change the fit of an MDS solution)
between the two configurations. We can use the Procrustes
algorithm to bring together the adult network fromMcNally et al.
(2017) with the adolescent network in Jones et al. (2018). This
visual comparison is presented in Figure 6.

adolescent_zeroorder <- cor(Rogers_Adolescent)

dissimilarity_adolescent <-

sim2diss(adolescent_zeroorder)

adolescent_MDS <- mds(dissimilarity_adolescent,

type="mspline")

fit_procrustes <- Procrustes(adult_MDS_

mspline$conf, adolescent_MDS$conf)

adolescent_glasso <- EBICglasso(cor

(Rogers_Adolescent), n=87, gamma=0)

qgraph(adult_glasso, layout=fit_procrustes$X,

groups = list(Depression = 1:16,

"OCD" = 17:26),

color = c("lightblue", "lightsalmon"), title=

"Adults, n=408", vsize=4)

text(-1,-1, paste("Stress=",

round(adult_MDS_mspline$stress,2)))

qgraph(adolescent_glasso,

layout=fit_procrustes$Yhat,

groups = list(Depression = 1:16,

"OCD" = 17:26),

color = c("lightblue", "lightsalmon"),

title="Adolescents, n=87", vsize=4)

text(-1,-1, paste("Stress=",

round(adolescent_MDS$stress,2)))

This algorithm not only creates interpretable plots; it can
also be statistically evaluated in terms of how well the MDS
solution replicates across different samples. The Procrustes
method provides a way to compare two network plots
in a highly meaningful way, where the position of nodes
directly corresponds to similarities or dissimilarities between
the two networks. We can even quantify the degree to which
the MDS replicates between the two networks by using a
congruence coefficient. A congruence coefficient is a measure
of the similarity of two configurations. It is similar to a
correlation coefficient, but does not extract the mean, and
computes a correlation about the origin (the point [0,0]),
rather than the centroid (the point around which the data
are centered). This results in more favorable properties than
a simple correlation for determining geometric similarity
(Borg and Groenen, 2005). The congruence coefficient is
generally very high, so users should not overemphasize the
magnitude.

round(fit_procrustes$congcoef, 3)

[1] 0.930

An original graphical LASSO empirical network configuration
and a replication in a distinct sample (Jones et al.,
2017) are presented with MDS-configured networks on
the zero-order correlation structures with a Procrustes
transformation.

PRINCIPAL COMPONENTS AND
EIGENMODELS

A potentially useful alternative approach is to plot nodes
within a coordinate system based on two extracted dimensions.
MDS is possibly the most useful method when one wishes to
meaningfully interpret the distances between nodes. In contrast,
using a coordinate system provides information on how each
node scores on an X criterion and a Y criterion. In a coordinate
system, nodes are interpretable in terms of their “X distance”
and “Y distance” from one another, but cannot be meaningfully
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interpreted in terms of their Euclidean distance from one
another (i.e., the distance if one drew a straight line between
nodes).

In principal components plotting and eigenmodels, nodes
are plotted by their loadings on extracted dimensions. To
be clear, these extracted dimensions do not represent latent
causes. Rather, they represent aggregations of variance in the
data. In some select cases, the underlying dimensions are
interpretable, making the absolute position of nodes meaningful
in accordance with some theoretical dimension (e.g., a dimension
from physiological to nonphysiological symptoms). Because
the dimensions represent aggregated variance in the data,
plotting according to extracted dimensions may be useful
for visualization, even if the dimensions themselves are not
interpretable. Thus, a researcher may be theoretically opposed to
the idea of latent dimensions as causal mechanisms of mental
disorders, but still use a principal components or eigenmodel
plotting approach to present a network or compare multiple
networks in an easily interpretable format.

It is unavoidable that information will be lost as we attempt
to represent multidimensional data in two-dimensions. This
limitation is true for all types of network plots. In our
specific application of principal components analysis (PCA) and
eigenmodels, information for the graph is derived from the
first two components or dimensions, and information from any
additional components or dimensions is ignored.

Principal Components Analysis
Principal components analysis is an excellent method for
extracting meaningful dimensions on which to plot nodes.
PCA and its associated rotation methods will be accessible
to most psychological researchers as common methods
within psychology [see Data Sheet 1 (Appendix) for technical
details]. Indeed, classical MDS (e.g., Torgerson, 1958) and
PCA are closely related methods. PCA can be performed in
two ways: using a singular value decomposition on a dataset
containing n observations on a set of variables (centered and
divided by

√
(n− 1), or using an eigenvalue decomposition

of the covariance (or correlation) matrix. From a network
perspective, standard PCA is thus limited to psychometric
networks (i.e., networks based on derived proximities)
and is not designed for relational input data as in social
networks.

Unlike in an MDS configuration, the graphed Euclidean
distance between nodes (i.e., the distance if one drew a
straight line between nodes) is not meaningful in a network
plotted with PCA. However, the X distance and the Y
distance are each meaningful (e.g., how far away nodes are
in horizontal space, and how far away they are in vertical
space), and represent the difference between nodes on each
extracted principal components. A PCA solution can be
either rotated or unrotated, depending on one’s preference
(Joliffe, 2002). These components might or might not be
meaningfully interpreted, depending on the theories regarding
the network. Regardless, using the principal components as
plotting mechanisms is useful to position nodes in a way that
should remain largely stable across successful replications.

FIGURE 7 | Principal components analysis configuration.

We demonstrate this by using a varimax-rotated PCA
implemented in the psych R package (Revelle, 2014) based
on the zero-order correlation structure for the adult network
(McNally et al., 2017). This visualization is presented in
Figure 7.

library("psych")

PCA_adult <- principal(cor(Rogers),

nfactors = 2)

qgraph(adult_glasso, layout=PCA_adult$loadings,

groups = list(Depression = 1:16,

"OCD" = 17:26),

color = c("lightblue", "lightsalmon"),

title="Adults, n=408",

layoutOffset=c(.3,.1), vsize=4)

To facilitate interpretation, we can also add the percent variance
accounted for by the first two principal components, and label
the axes as “Component 1” and “Component 2.” Like the stress
value inMDS, the variance accounted for by the two components
can gauge how well we are capturing the complexity of the
network in a two-dimensional solution. In the case of Figure 7,
we accounted for a relatively low proportion of variance. Thus,
even though nodes 10 and 14 are very similar in terms of the first
two dimensions, we must be cautious about this interpretation,
because they may differ on dimensions not captured in this plot.

text(1.5,-.8, paste("% var=",

round(sum(PCA_adult$values[1:2]/

length(PCA_adult$values)),2)))

title(xlab="Component 1",

ylab= "Component 2")
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FIGURE 8 | Eigenmodel configuration.

The component loadings of variables (nodes) on the first two
extracted dimensions from a principal components analysis can
be used as the X-Y coordinates for plotting the nodes. The second
component likely captures a dimension of depression vs. OCD.
The first component is less clear, but after examining specific
nodes, we hypothesize that it is perhaps capturing a dimension
of behavioral vs. internally experienced symptoms.

Eigenmodel Networks
Eigenmodels are a type of latent variable model for symmetric
relational data such as undirected networks (Hoff, 2008). They
are a generalization of other popular latent variable models,
such as latent class and distance models. Although eigenmodels
have not yet been applied to modeling psychometric constructs,
they are popular in other fields, including social network
analysis (Hoff et al., 2002). Eigenmodels are extracted purely
on the network structure by using a model-based eigenvalue
decomposition and regression [see Data Sheet 1 (Appendix)].
The parameters are estimated through Markov chain Monte
Carlo (MCMC). That is, for each parameter we extract a posterior
distribution by means of which we can compute posterior means
(or modes) and corresponding credibility intervals.

Eigenmodels allow for many interesting statistical
possibilities, including attractive methods for identifying
clusters (e.g., communities) of nodes. Eigenmodels also allow
the researcher to study the effect of covariate variables on the
structure of the weights matrix: for example, Kolaczyk and
Csárdi (2014) used eigenmodels to study whether a shared office
location (a plausible covariate) affected the network structure
of collaborations among lawyers. Here, we emphasize that
eigenmodels can provide a convenient method for the visual

representation of networks in which nodes are plotted in a
meaningful space. Because eigenmodels are based solely on the
weights matrix (i.e., the edges), they can be computed for any
network, and are not limited to psychometric networks. We
demonstrate this, based on the graphical LASSO networks of the
adult network, using the eigenmodel package (Hoff, 2012). The
resultant visualization is shown in Figure 8.

library("eigenmodel")

diag(adult_glasso) <- NA ## the function

# needs NA diagonals

p <- 2 ## 2-dimensional solution

fitEM <- eigenmodel_mcmc(Y = adult_glasso,

R = p, S = 1000, burn = 200, seed = 123)

EVD <- eigen(fitEM$ULU_postmean)

evecs <- EVD$vec[, 1:p] ## eigenvectors

# (coordinates)

qgraph(adult_glasso, layout=evecs,

groups = list(Depression = 1:16,

"OCD" = 17:26),

color = c("lightblue",

"lightsalmon"),

title= "Adults, n=408", vsize=4)

title(xlab="Dimension 1", ylab= "Dimension

2")

Eigenmodels extract latent dimensions directly from the weights
matrix of a network. The first two dimensions determine the X
and Y position of each node, respectively. For example, a node
on the right side has a high loading on dimension 1, while a node
near the top has a high loading on dimension 2.

COMPARING VISUALIZATION METHODS:
WHAT TO USE WHEN?

In this tutorial, we presented four types ofmethods for visualizing
network models: force-directed algorithms, multidimensional
scaling, principal components analysis, and eigenmodels. Each of
these methods has certain benefits and drawbacks. We present a
summary of these costs and benefits in Figure 9.

Force-Directed Algorithms
Perhaps the main benefit of force-directed algorithms is clean
aesthetics. The nodes in a force-directed plot will rarely overlap,
and relatively equal distance between nodes allows for easy
viewing of the edges. The main drawback of force-directed
methods is that the spacing between nodes is uninterpretable.
This can lead to problems, especially when researchers or
readers are unaware of this drawback, and make erroneous
interpretations based on the node placement.

Multidimensional Scaling (MDS)
The primary benefit of multidimensional scaling is that the
distances between nodes are interpretable. In other words, nodes
that are close together are closely related, and nodes that are
far apart are less closely related. The stress-1 value provides
a helpful estimate of how interpretable the distances are (e.g.,
how well the network is reducible to two dimensions). A low
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FIGURE 9 | Comparison of visualization methods. *If force-directed methods are used to compare networks, the layouts should be constrained to be identical for

both networks. Although this does not facilitate any spatial interpretation, it allows for easy comparison of edges. In both PCA and eigenmodels, caution should be

taken in comparing networks, as the exact extracted components/dimensions will differ between datasets. **PCA relies on a correlation matrix or a set of

observations. ***Although central nodes will sometimes be found near the center, we are not aware of any plotting method in which this assumption always holds.

stress value means that the distances are highly interpretable,
and a high stress value means that the distances are not very
interpretable, due to the network’s high dimensionality. MDS
can be used to visually compare replications of networks via
the Procrustes algorithm. One drawback of MDS (compared
to force-directed algorithms) is that nodes may sometimes
be placed very close together, making edges harder to see.
This drawback can often be alleviated by reducing the node
size or by using points rather than circles to represent
nodes.

Principal Components Analysis (PCA)
The primary benefit of principal components analysis plotting
is that the placement of nodes on the X and Y axes becomes
interpretable. In other words, nodes that are far to the right
differ in some dimension (i.e., component), compared to nodes
on the left. The percent of variance accounted for by two
components provides a helpful estimate of how interpretable the
node positions are. PCA relies on a correlation matrix or a set of
variable observations. Thus, one possible drawback of principal
components analysis is that it specifically applies to psychometric
networks (i.e., networks relying on a correlation matrix), but
not to directly derived networks (e.g., social networks, where
the data are not amenable to computing PCA). In PCA, edges
may also be difficult to see if nodes score very similarly on both
components.

Eigenmodels
In terms of plotting and interpreting networks, eigenmodels are
similar to PCA. The X and Y placement of nodes is interpretable
in terms of latent dimensions of the network. One main benefit
of the eigenmodel plotting approach compared to PCA is that

eigenmodels can be computed from any network structure, and
do not rely on the correlation matrix.

A brief comparison of the benefits and costs of different
visualizations.

CONVENIENCE FUNCTIONS

We hope that this tutorial provides researchers with an
understanding of the methodology and rationale for using
multidimensional scaling, PCA, and eigenmodels in addition
to force-directed algorithms as attractive visualization methods
in network analysis. In addition to using these methods as
explained in the R code provided above, we have created
convenience functions for these plotting methods, which
facilitate ease of use at the expense of some flexibility (Jones,
2017).

library("networktools")

adult_glasso <- EBICglasso(cor(Rogers),

n=408)

adult_qgraph <- qgraph(adult_glasso)

MDSnet(adult_qgraph, MDSadj = cor(Rogers))

PCAnet(adult_qgraph, cormat = cor(Rogers))

EIGENnet(adult_qgraph)

SUMMARY

Although it is difficult to represent highly complex data in two
dimensions, there are a variety of well-established methods
that can accomplish this goal. Although two-dimensional
representations can never fully convey the true complexity
that underlies high-dimensional data, they can provide
interpretable visualizations. In addition, many of these methods
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are capable of providing reasonable and interpretable visual
comparisons across networks derived from different samples.
We recommend that network researchers carefully consider
the benefits and costs of each method and utilize methods
that best accomplish their specific aims. We also recommend
that researchers explicitly state their rationale for using
certain visualization methods and provide clear instructions
for how to interpret these visualizations. As researchers
follow these recommendations, they will be able to furnish
interpretable visualizations that clearly communicate their data
to others. Perhaps more importantly, researchers will avoid
misinterpretations of visualized data that lead to erroneous
conclusions.
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